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Abstract 
 

 
 

 
 

By Marrwa Abdullah Alrrshedan 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science at Virginia Commonwealth University. Virginia Commonwealth University, 2012 

 
Major Director: Michael A. Reshchikov, Associate Professor, Department of Physics 
 
Photoluminescence (PL) has been studied from different types of bulk GaN samples 

grown by hydride vapor phase epitaxy technique at Kyma Technologies. Point defects in 

bulk and at the surface affect the electrical and optical properties of GaN and could be 

analyzed by PL. The surface of the samples was polished with different techniques: one 

is chemical mechanical polish (CMP) and another is mechanical polish (MP). PL data 

from MP and CMP surfaces show that PL intensity from the CMP-treated surface is 

much higher than that from the MP-treated surface. This can be explained by defects 

formed during the process of MP polish. However, after the MP-treated surface is etched 

with RIE method, the optical quality of the MP-treated surface improves. In particular, as 

the depth of etching increases from 50 nm to 700 nm, the PL intensity increases by a 

factor of 1000. PL from the CMP surfaces of undoped bulk GaN samples contains a 

broad red luminescence (RL) band and a broad green luminescence (GL) band. However, 

PL from the CMP surfaces of Fe-doped GaN samples contained a blue luminescence 

band (labeled as BL2 in literature) and the yellow luminescence (YL) band. PL from 

MP-treated surfaces (both undoped and Fe-doped) was very weak and it contained 
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relatively narrow red and green bands. These bands, labeled RL2 and GL2, respectively, 

are quenched at relatively low temperatures, in contrast to the RL and GL bands which 

are almost independent of temperature in the range from 15 to 300 K. 
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Chapter 1:  Introduction 

1.1 Motivation  
               The next important semiconductor material after silicon is gallium nitride 

(GaN). It is direct and wide bandgap semiconductor of (3.4 eV at room temperature). It 

has special properties to operate at higher temperature, higher power density, higher 

voltage and higher frequency that make it very exciting to use in future electronic 

systems. It is an ideal material to emit light and is used to fabricate blue and violet light 

emitting diodes (LED) as well as laser diodes (LD).1,2 GaN contains many structural and 

point defects where these defects greatly affect the electrical and optical properties of the 

host material. In this work, we study free-standing bulk GaN templates and investigate 

the properties of defects in bulk GaN. 

           Point defects are defects of crystal lattice of atomic size. They are common, 

especially vacancies, when atoms randomly change their places at high temperatures of 

growth, leaving empty lattice sites. Defects play an important role in the optical and 

electrical properties of semiconductors.5,6 Point defects in bulk GaN samples grown by 

hydride vapor phase epitaxy (HVPE) affect the behavior of these samples.    

             Photoluminescence (PL) can be used as a tool to study the properties of 

defects in bulk GaN. PL is the emission of photons from a material produced by light 

from an excitation source. The process of PL starts when a material is illuminated with 

above-bandgap light. The photons are absorbed by the material, then the material emits 

its own photons with lower energy. The band structure of GaN has a wide gap (3.4 eV at 
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room temperature) between the valence and conduction bands. The PL is an important 

tool in the characterization of defects due to its unique sensitivity to discrete electronic 

states. 

       Figure 1.1 shows schematically how the PL is excited by a laser. The surface of 

GaN is illuminated with light which has a photon energy above the bandgap energy. 

Electrons in the valence band are excited to the conduction band. After the electron is 

excited to the conduction band, it leaves a hole in the valence band. The hole dissipates 

the energy and moves toward the top of the valence band. The electron in the conduction 

band also dissipates the excess energy in the form of phonons and moves to the bottom of 

the conduction band. As the hole freely moves in the valence band, an acceptor with a 

level in the gap may attract and capture the hole: then the hole becomes a bound hole. 

Eventually, the bound hole and a free electron from the conduction band can recombine.6 

There are two different ways how the energy from the electron-hole recombination is 

released: via emission of phonons and photons. The emission of photons is called 

photoluminescence. The phonons dissipate the remainder of energy.  

        Although, the progress is being made in the understanding of bulk and surface 

defects in GaN, bulk GaN substrates are still a big issue and point defects in these 

substrates are not well understood. One of the most common techniques that have been 

used to study defects in various semiconductors, including GaN, is PL. In this thesis, 

bulk GaN substrates were grown by hydride vapor phase epitaxy (HVPE) and were 

studied through the use of photoluminescence.                    
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  Chapter 1 Figures 
 
 

 
 
Fig. 1-1: Band diagram for a semiconductor with main electron transitions (on the left) 

and PL spectrum (on the right) illustrating the origin of the PL bands. 
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Chapter 2:  Literature review 

2.1 Introduction   
            GaN semiconductor is one of the most attractive semiconductor materials. In 

1969, Maruska and Tietjen succeeded in growing single crystalline GaN on sapphire 

substrate by Hydride Vapor Phase Epitaxy (HVPE).9 They have also established that 

GaN has bandgap energy of about 3.39 eV at room temperature, and that GaN could be 

grown with a high purity to be used in electrical and optical devices.9 In 1970’s, Pankov 

et al.10 and Maruska et al.11 declared the first metal-insulator-semiconductor (MIS) type 

blue – green light emitting diode (LED) based on GaN. The producing of a single 

crystalline GaN by Molecular Beam Epitaxy (MBE) was successfully achieved in 1974 

by Akasaki and Hayashi.12 The first practical MIS type blue-green LED based on GaN 

grown by HVPE was reported in 1981.13 

            Although the development of growth of free-standing GaN by HVPE technique 

has been going on for several years, the quality of this material is generally still not high 

enough and the cost is not low enough for large scale production. In 1998, Porowski et 

al.14 have succeeded in synthesis of GaN bulk crystals under high pressure (15-20 Kbar) 

and high temperature (1400-1600C). This material was reported to be practically free of 

extended defects. In the same time, Usui et al.15  have succeeded in growth of a few tens 

of a micron thick GaN on a 2” diameter sapphire substrate by using HVPE. However, it 

cannot give any fundamental advantages of homoepitaxy since the GaN is still on a 

sapphire substrate. One year later, Kim et al.4 reported on the preparation and properties 
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of free-standing GaN substrate with a 350 µm thickness and 10 mm × 10 mm area 

prepared by the HVPE growth technique. The PL spectrum was measured in their work 

at 10 K and at room temperature. They found that the PL spectrum for the free-standing 

GaN substrate measured at 10 K (as shown in Fig. 2.1) consists of the excitonic emission 

and the deep donor-acceptor pair (DAP) recombination at 1.8 and 2.2 eV. However, there 

was no emission from the shallow DAP recombination. Fig. 2.2 shows the PL spectrum 

at room temperature for a free-standing GaN substrate. It consists of the weak emission 

at 3.4 eV from the bandedge recombination and at 2.2 eV which is the yellow emission 

band.4 This work concluded that the free-standing GaN substrate has been found to be 

optically and electrically of high quality but still needs to be improved in crystal quality.  

           As the HVPE method improved, the quality of thick GaN layers is also paved the 

way for investigating extended defects with more confidence. In 2002, Liliental-Weber et 

al.16 showed that the dislocation density drastically decreases with increasing thickness of 

GaN. In 2001, Samsung Advanced Institute of Technology (SAIT) in Korea has 

produced free-standing GaN templates grown by HVPE which have the superior quality 

to date, combining the highest bulk mobility of electrons, very low density of 

dislocations, and the lowest concentration of uncontrolled donors and accepters.6 In 2001 

and 2002, Reshchikov et al.6 measured PL spectrum from free-standing GaN produced 

by SAIT at 15 K and at room temperature. They found that PL spectrum at low 

temperature contains multiple exciton peaks above 3.3 eV. The ultraviolet luminescence 

(UVL) band at 3.26 eV and a broad yellow-green band (with a maximum at 2.2-2.4 eV) 

were also studied. A very weak blue luminescence (BL) band at 2.9 eV and the RL band 
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at about 1.8 eV could be also resolved. The PL bands, except for the RL band and the 

yellow green band, are thermally quenched at room temperature. However, the broad 

yellow-green band and the near-bandedge emission peaking at about 3.41eV could be 

observed at room temperature, see Fig. 2.3. The result of their study is that the YL and 

GL bands, that are present in a high-purity GaN free-standing template grown by HVPE, 

are related to the same defect, namely to the gallium vacancy-oxygen complex. 

 The growth process of HVPE to produce high-quality thick (≥ 300µm) GaN layer 

on sapphire and the removal of such a layer from the sapphire substrate to obtain free-

standing GaN material were described by Monemar et al.17 In this work, it was discussed 

that defects like dislocations, micro-cracks and pits were produced during growth. The 

laser lift-off technique is shown to be practical technology for producing free standing 

GaN material at about 700C. This work described problems which are related to the 

growth process and how this problem affects the quality of thick HVPE GaN wafer. The 

main problem of free-standing material is large bowing of such a wafer, because of the 

stress at the former GaN – sapphire interface.  

2.2 Growth of GaN samples 

          Hydride Vapor Phase Epitaxy (HVPE) is the most common technique to grow bulk 

GaN material, due to high growth rate, a comparatively simple growth chemistry and 

economic gas consumption as compared to other vapor phase growth techniques. HVPE 

has proven to be an effective technique to fabricate free-standing GaN substrates.18 In the 
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case of producing high-quality thick (≥ 300 µm) GaN layers, the high growth 

temperatures (> 1000C) were used. The thick GaN layers were grown initially directly 

on the sapphire substrate. These thick layers were then removed from the sapphire 

substrate (Fig 2.4). A successful technique for separation of thick GaN layers from their 

sapphire substrate is a laser lift-off (LLO). Fig. 2.5 shows a simple system for the LLO. 

The laser is used to melt GaN near the GaN/sapphire interface. It has a wavelength of 

about 353 nm to be absorbed in GaN. The 2” GaN wafer (on sapphire) is placed upside 

down over a small volume heated with a hot plate arrangement to about 700C.17 The 

GaN layer is essentially strain-free at this temperature. The whole sample holder is linked 

to an x-y stage which is moved in controlled fashion via a computer.  

         The laser spot is moved from the perimeter to the center of the wafer in a spiral 

style. The spot size is less than 1mm in diameter. A thin GaN layer (a few tenths of nm) 

within the laser absorption length decomposes into liquid Ga and N2 gas since the laser 

spot heats the GaN at interface with the sapphire. LLO is a useful technique for the 

removal of the substrate from these thick wafers, without cracking of the wafer. Free-

standing GaN wafers produced via LLO have main problem which is the large bowing of 

the wafers. When the GaN layer is residing on the sapphire, it has a convex bowing from 

the thermal mismatch during cool down. The size of this bowing is large: up to 500µm 

over a 2” wafer.17 The concave bowing becomes smaller after lift-off the layer has 

relaxed but still several hundreds of µm in the center of a 2” wafer as shown in Fig. 2.6. 
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2.3. Luminescence Related to Point defects in undoped GaN  

          Fig. 2.7 shows the positions of the energy levels calculated for the doped and 

undoped GaN.19 These levels can be compared with the positions of PL peaks determined 

from the luminescence studies. We will focus in photoluminescence (PL) spectrum 

measured from undoped GaN layers. The PL spectrum from undoped GaN usually 

contains a broad yellow luminescence (YL) band at about 2.2 eV, and it is still not clear 

what kind of defects contribute to the broad YL band (Fig .2.8). In undoped GaN grown 

by HVPE method, the YL is replaced by a green luminescence (GL) band with a 

maximum at about 2.4 eV.6 This GL band is attributed to another charge state of the 

defect responsible for the YL band. Sometimes, a red luminescence (RL) band is 

observed at about 1.8 eV, see Fig. 2.8. In the free-standing GaN template, the RL band 

could be seen as a shoulder to the YL band. Another luminescence band that could be 

discovered in undoped GaN is the blue luminescence (BL) band at about 2.9 eV which is 

related to a different defect. 
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Chapter 2 Figures 
 
 

 
 
 
Fig. 2.1: PL spectrum measured at 10 K for bulk GaN substrate (Ref. 4). 
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Fig. 2.2: PL spectrum measured at room temperature for bulk GaN substrate (Ref. 4). 
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Fig. 2.3: PL spectra from a freestanding GaN template at 15 and 295 K. Exciton part at 

15 K is cut in order to present better the defect-related bands (Ref. 6). 
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Fig 2.4: Preparation of bulk GaN sample by HVPE and LLO techniques. 

 
 

 
 

Fig. 2.5: Schematic picture of the laser lift-off set-up, using a computer controlled x-y 

stage where the hot plate with the wafer is placed (Ref. 17). 
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Fig. 2.6: Schematic illustration of the bowing of a thick GaN wafer on sapphire before 

and after lift-off (Ref. 17). 
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Fig. 2.7: Radiative transitions associated with major doping impurities and 

unintentionally introduced defects in GaN. For the VGa ON complex, two charge states are 

shown (YL and GL bands) (Ref 6). 
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Fig. 2.8: PL spectra from undoped GaN samples at 15 K (Ref 6). 
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Chapter 3: Experiment 

3.1 Experimental setup 

 In order to measure photoluminescence of semiconductors, the following components 

are usually included in a setup: 

1. Light source (HeCd Laser) 

2. A lens to focus light on the sample  

3. A cryostat with a sample holder and windows 

4. Collection optics  

5. Monochromator with moveable grating and two variables slits (entrance and exit).  

6. Detector (photomultiplier tube)  

7. Electronics to analyze the signal 

               The photoluminescence experimental setup is shown in Fig 3.1. In this setup we 

are using a HeCd laser (model IK3552R-G) from Kimmon Electric Company with a total 

power of 50 mV, emitting at the wavelength of 325 nm. The laser is used as an excitation 

source for PL, and it produces photons with energy of 3.81 eV (UV region of the 

spectrum). The laser beam is directed through a set of neutral-density filters (NDF) to the 

sample, which is mounted to a sample holder inside an optical cryostat. The closed cycle 

cryostat from Janis Research Co. (model DE-202FF) allows changing temperature in the 

range from 15 K to 320 K. After the PL is emitted from the sample in all directions, part 
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of the PL is collected with a lens called a condenser and placed at its focal distance from 

the sample, so that a parallel beam of emission passes throw a dark tube until it reaches 

another concave lens that focuses the emission onto a slit of a monochromator. A color 

glass filter is placed before the monochromator to cut parasitic emission with energy 

lower than 3.5 eV, which is reflection of the laser light from the sample surface in 

direction of the first collecting lens. Two slits (at the entrance and exit of the 

monochromator) reduce the range of wavelengths selected by the monochromator, where 

the smaller slit width provide the better resolution. However, the intensity of the signal 

decreases proportionally to the square of the slit width (if the widths of two slits are kept 

equal). The width of each slit could be varied from 0.002 to 1mm. There is a grating 

inside the monochromator, which disperses the emission in order to obtain a PL 

spectrum. The purpose of the grating is that only one wavelength of light can exit the 

monochromator at a time. Different wavelengths can be obtained by rotating the grating. 

The PL emission, after exiting the monochromator, is detected by a photomultiplier tube 

(PMT). The PMT is cooled to about 230 K to reduce electrical noise. 

3.2 Description of the samples studied in this work  

        To study the PL from freestanding GaN substrates, four different samples from 

Kyma 20 were used in this work. These included two semi-insulating samples doped with 

Iron (Fe) and two undoped n-type samples. The main parameters of the samples are 

given in Table 3.1.20 All the samples were grown on c-plane sapphire substrate with 

HVPE method which grows a thick layer of GaN substrate (more than 400 m-thick) on 
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sapphire, then the sapphire was removed by LLO technique as described in Chapter 2. 

After removal of the sapphire, the layer of GaN is cut to the size of 10×10 mm for all 

samples. Finally, both sides were polished with Chemical Mechanical Polish (CMP) or 

Mechanical Polish (MP). Since GaN was grown in c-direction, every sample has Ga face 

and N face, where some surfaces are polished with CMP and others with MP methods 

(see the description of samples in Table 3.2). 

             One of the semi-insulating bulk GaN (sample AE 857.14 in Kyma's notation and 

857-14 in our notation) has pits on the surface which are shown in Fig 3.2. This sample 

has Ga-face treated with CMP and N-face treated with MP (Table 3.2). Ga-face of this 

sample has two characteristic areas as schematically shown in Fig 3.3, where A indicates 

the pits and B indicates the remaining surface of the sample (background). The MP-

treated surface of an undoped bulk GaN (sample AG 1412.4 in Kyma's notation and 

1412-4 in our notation) was etched with Reactive-ion etching (RIE) method. It is an 

etching technology used in microfabrication. It uses chemically reactive plasma to 

remove material from the surface. The plasma is generated under low pressure vacuum 

by an electromagnetic filed. The etching process was done for the MP-treated Ga-face 

with SiCl4 chemical material. The surface of this face was divided into four quarters as 

shown in Fig. 3.4 where one of the quarters was kept as a control (not etched) area and 

the three remaining quarters were etched to a different depth. One quarter was etched to 

the depth of 700 nm, another one – to the depth of 200 nm, and the last one – to the depth 

of 50 nm. 
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  Chapter 3 Figures 
 
Table 3.1: Properties of bulk GaN samples grown at Kyma 20 

 

Table 3.2: Characteristics of bulk GaN sample in this study 
 
Sample   

Type  

 

Doping 

Thickness 

(µm) 

Description 

1305.3 n-type undoped 424 CMP of Ga-face and 

 CMP of N-face 

1412.4 n-type undoped 393 CMP of N-face and  

MP of Ga-face 

1412.3 n-type undoped  CMP of Ga-face and  

MP of N-face 

857.3 Semi-

Insulting  

Fe 434 CMP of N-face and  

MP of Ga-face  

857.14 Semi-

Insulting 

Fe 435 CMP of Ga-face and  

MP of N-face  

 

Dislocation Density 104 -106 /cm2 

Thermal Conductivity  2.5 W/cm-k 

Size  10×10 mm 

Growth Method  HVPE 
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Fig. 3.1: Experimental setup for PL measurements 
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Fig. 3.2: Pits on the Ga-face treated with CMP. Bulk GaN sample (857-14). Large 

Indium contacts in two corners were used for the Kelvin Probe measurements. 

 

 

 
 

Fig. 3.3: Schematic profiles of GaN samples near the surface. 

A: pits on the Ga-face,  B: the background. 
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Fig. 3.4: Schematics of the MP-treated Ga-face of undoped GaN sample (1412-4) etched 

to different depths by RIE with SiCl4.   
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Chapter 4: Experimental Results and Discussion 

4.1 Photoluminescence from high-quality undoped GaN (sample 1305.3) 

4.1.1 Comparison of PL from Ga and N faces at room temperature 

           Figure 4.1 shows PL spectra from Ga and N faces for high-quality GaN (sample 

1305-3) at 300 K and excitation intensity of 0.3 W∕cm2. Both faces of the sample were 

chemically mechanically polished (CMP). The PL spectra from two faces look similar in 

having a strong PL intensity and the exciton peak at about 3.41 eV. However, there are 

some differences between them. The major difference is that PL from Ga-face is more 

intense than that from the N-face. A broad RL band (at about 1.8eV) and GL band (at 

about 2.4) were observed from N-face, while PL from Ga-face shows just a broad GL 

band. Generally, PL intensity is high for both faces due to the CMP treatment of the 

surface. 

4.1.2 Comparison of PL from Ga and N faces at low temperature 

     The PL spectra from Ga and N faces at low temperature for high-quality bulk GaN are 

shown in Fig. 4.2. The excitation intensity is 0.3 W∕cm2 and the temperature is 15 K. The 

PL from both faces is strong and the PL spectrum includes the same broad RL band (with 

a maximum at about 1.82 eV) and GL band (at about 2.4 eV). Both faces also have an 

exciton peak at 3.46 eV which is close to the bandgap of GaN. It is expected that in high-

quality GaN the excitonic PL has the highest intensity at this energy. The main difference 

between the two faces is that the exciton peak in N-face is wider and has lower intensity 
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than the exciton peak in Ga-face. Intensity of the defect related PL bands (RL and GL) is 

also much higher for the Ga face. 

 4.1.3 Temperature dependence of PL   
         

           PL spectra for Ga- and N faces measured at various temperatures are shown in 

Figs. 4.3 and 4.4, respectively. In both cases, the exciton emission intensity decreases 

significantly with increasing temperature from 15 to 300 K. The GL band intensity 

decreases a little for Ga face only. The RL band intensity remained nearly constant in this 

temperature range.    

4.1.4 Dependence of PL on excitation intensity for Ga-face         

         The dependence of PL spectra on excitation intensity is shown in Fig. 4.5. In this 

figure, the PL intensity is divided on the excitation intensity. PL intensity of the exciton 

band has a linear increase with the excitation intensity. The GL band intensity increases 

faster than linearly with increasing excitation intensity (an increase in Fig. 4.5 

corresponds to a super linear increase of PL intensity with excitation intensity), while the 

RL band demonstrates the opposite behavior (its decrease in Fig. 4.5 corresponds to a sub 

linear increase with excitation intensity).  
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4.2 Photoluminescence from CMP- and MP-treated surfaces of undoped 

GaN (sample 1412.4) 

 One GaN wafer, after separation from sapphire, was cut into 10×10 mm pieces 

and its faces polished by MP and CMP. Sample 1412.4 has CMP-treated N face and MP-

treated Ga face. Figure 4.6 shows PL spectra from Ga and N faces at 15 K and excitation 

intensity of 0.3 W∕cm2. The PL spectrum from CMP-treated N-face has higher PL 

intensity than that from the MP-treated Ga-face. A broad RL band (at about 1.8 eV) and 

GL band (at about 2.3) were observed from N-face, while PL from Ga-face contains of 

RL2 band (at about 1.88 eV) and GL2 (at about 2.38). These peaks will be discussed in 

more details in the next section. The exciton peak from N-face is much higher than that 

in Ga-face. The lower intensity of the MP- treated surface is due to the defects at the 

surface and interface formed during the growth process of the sample. 

4.3 Photoluminescence from Fe –doped GaN (samples 857.3 and 

AE857.14) 

4.3.1 Comparison of PL from Ga and N faces at low temperature 

           As-received semi-insulting bulk GaN (sample 857-3) has Ga-face and N-faces, 

where the Ga-face is polished with MP and the N-face is polished with CMP, as 

described in Chapter 3. To compare PL spectra from the two faces, we measured PL 

spectra at low temperature (15K) and at excitation intensity of 0.3 W∕cm2 (Fig. 4.7). We 

observed very weak PL intensity from MP-treated Ga-face. PL spectrum from Ga-face 

consists of two bands which are named the RL2 band (at about 1.9 eV) and GL2 band (at 
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about 2.4 eV) because they are identical to the red and green bands reported in Ref 6. 

The exciton band is very weak and it peaks at about 3.45 eV.  

             However, PL from N-face, which was prepared by the CMP treatment (Fig. 4.7), 

is much stronger than that from the Ga-face. Instead of the RL2 and GL2 bands seen in 

Ga-face, PL spectrum from the N-face shows one broad band (peaking at about 2.2 eV) 

which is identified as the Yellow luminescence (YL) band. Also, there is an exciton peak 

(at about 3.46 eV), and it is much stronger than the Ga-face's exciton peak. As we can 

see, CMP-treated surface gives PL intensity much stronger than the MP-treated surface. 

4.3.2 Comparison of PL from Ga-face with and without the 325 nm pass filter 

        The PL spectra with using the 325 nm filter and without it from the Ga face of the 

semi-insulting bulk GaN (sample 857.3) are shown in Fig. 4.8. The temperature during 

the measurement was fixed at 15 K, and the excitation intensity at 0.3 W∕cm2. Without 

using the filter, PL spectrum includes artificial lines from laser that are reflected from the 

sample and enter our monochromator. However, after we use the filter that passes only 

325 nm line from the HeCd laser, all artificial lines disappear. Therefore, a filter must be 

used to cut the parasitic lines.  

4.3.3 Temperature dependence of PL from MP-treated surface  

          The effect of temperature on PL spectrum from Ga-face of sample 857-3 which was 

polished with MP is shown in Fig. 4.9 where the excitation intensity is 0.3 W∕cm2. 

Unfocused laser was used in this experiment to observe the change of RL and GL bands 
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with increasing temperature. The measurement starts at low temperature (about 15 K) 

and then increases up to room temperature (300K).  

          PL spectrum at 15 K contains an exciton peak at 3.47 eV and another relatively 

sharp peak at 3.3 eV. From the literature, the peak at about 1.8 eV is known as the RL2 

band and the peak at about 2.4 eV is known as the GL2 band as illustrated in Fig. 4.9. In 

general, as the temperature increases, PL intensity decreases. All the bands in this sample 

are quenched at temperatures above 100 K and disappear at room temperature. The 3.3 

eV band decreases similar to the exciton band. Therefore, the results of temperature 

dependence allow us to conclude that the 3.3 eV band has the exciton nature. Most 

probably, this PL band is related to an exciton bound to some to structural defects. The 

RL2 and GL2 bands are related to unknown defects. 

            An interesting result is that the PL intensity of RL2 band increases as the 

temperature is increased from 50 K to 100 K. This result was previously reported in Ref. 

21 where the PL intensity of the RL2 band increased in the same temperature range. This 

behavior of PL in the temperature range from 10 K to 60 K was explained by the fact that 

the lifetime of RL2 band decreased by two orders of magnitude in this temperature 

range.21 

            The dependence of PL peak intensity on inverse temperature for the RL2 and 

GL2 bands is shown in Fig. 4.10. At low temperatures, the PL intensity remains 

unchanged for both these bands. With increasing temperature, at T > 100 K, the intensity 

of the RL2 and GL2 bands starts decreasing exponentially (a linear slope in the 

Arrhenius plot which is the dependence of the logarithm of PL intensity on inverse 
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temperature). This quenching of PL reveals the activation energy in the range of 90-120 

meV. This is very similar to the results reported for the RL2 and GL2 bands in literature. 

4.3.4 Comparison of PL from Ga face and N face for sample 857.14 at 15 K  

 Figure 4.11 shows two PL spectra: one for Ga-face (CMP-treated) and another for 

N-face (MP-treated) from as-received semi-insulting bulk GaN (sample 857-14) at 15 K 

and excitation intensity of 0.3 W∕cm2. The PL intensity from Ga-face is much higher than 

that from N-face which means that CMP treatment results in much higher PL intensity 

than the MP treatment.  We assume that the low intensity of the MP-treated N-face is due 

to the defects at the surface or near the surface. 

4.3.5 The effect of sapphire window on PL spectrum from MP surface 
  

Figure 4.12 shows the effect of sapphire window on PL spectrum from N-face which was 

polished with MP. The measurement first was done by placing a sapphire window on top 

of the sample to press it harder to the copper holder in order to provide good thermal 

contact. With this sapphire window, the PL spectrum has a contribution from the window 

itself because the PL intensity from GaN is extremely low. However, after we removed 

the sapphire window (by replacing it with a copper washer that presses a sample but 

allows illuminating the sample and collecting the PL signal) the PL spectrum changed as 

shown in Fig. 4.12. We can see that the contribution of PL signal from the sapphire 

window is removed, and the RL2 and GL2 bands can be resolved much better.      

  4.3.6 PL from pits on Ga-face 
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  The Ga-face of the semi-insulting GaN (sample 857-14, CMP-treated surface) has few 

pits as shown in Fig. 3.4 and as was mentioned in Section 3.2. We selected two 

characteristic regions: A and B as shown in Fig. 3.5 where A indicates the pits and B is 

related to the background area free of the pits. The measurements of PL spectra for this 

face were done in different regions of the surface of Ga-face and the results are 

summarized in Figs. 4.13 and 4.14.  

 First, the PL was measured when the unfocused laser beam illuminated the area 

with diameter 4 mm which included few small pits (A) and the background (B). Then, 

the laser beam was directed to one large pit (A) with small contribution from the 

background area (B). In this experiment, the beam size was decreased to about 1 mm by 

placing a diaphragm on the way of the laser beam. Next, the PL was collected from the 

background, free of the pits, which means just in (B). The size of the laser beam was 4 

mm again. These three PL scans are shown in Fig. 4.13.   

 For the first measurement step, when the PL was collected from large area 

including pits, the PL spectrum consists of intense exciton peak (at about 3.46eV), the 

blue luminescence (BL) band with maximum at about 2.95 eV, and the YL band with a 

maximum at about 2.2 eV. For the next area, when the unfocused laser beam was 

directed at one large pit and included some background area, the PL spectrum is similar 

to the previous one but intensity of the YL band intensity increased much. In the last 

step, PL spectrum from the background area consists of the BL band which is just like 

the BL band in the first step, but the exciton peak and the YL band decreased.  
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 Finally, the PL was collected with focused laser beam (about 0.2 mm size) from 

the pit (A) and from the background (B), and these PL spectra are shown in Fig. 4.14. 

The PL spectrum from the pit shows that the BL band disappears; however, the intensity 

of the exciton peak and YL band increased significantly. The relative PL intensity 

(integrated over the entire spectrum) from the pit is much larger than that from the 

background. 

         The PL spectra from different regions of this sample show that the pits have 

different PL spectrum and PL intensity as compared to the background as shown in Fig. 

4.14. The pit area shows the YL band, while the background shows the BL band. The 

high PL intensity from the pits and very low PL intensity from the background can be 

explained if we assume that the pits contain a conductive GaN which has a high PL 

intensity, and the background is insulting which has low PL intensity. 

4.4 The effect of dry etching on PL from MP surface (sample 1412-4) 

4.4.1 The effect of different etching depths on PL intensity  

         The MP-treated surface of the bulk GaN substrate (Ga face of sample # 1412-4) was 

etched with RIE method. The etching process was described in Chapter 3. The PL spectra 

were measured at 15 K and excitation intensity of 0.3 W/cm2 from different areas which 

were etched to different depth. The result of this measurement is shown in Fig. 4.15. We 

can see that the PL intensity from the MP-treated Ga-face increased after etching the 

sample, and the PL intensity increases with an increase of the depth of etching. The 

highest depth of about 700 nm depth has a highest PL intensity among other values of 
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etching such as 0, 50 and 200 nm. RL band (at about 1.8 eV) and GL band (at about 2.4-

2.5 eV) were observed in the PL spectra from the area etched to the highest depth (about 

700 nm). On the other hand, the control (not etched) area shows the lowest PL intensity 

and the RL and GL bands disappear. All these results lead to a conclusion that the quality 

of the Ga-face subjected to MP polish improves dramatically after etching off of about 1 

m of the defective near-surface region. We assume that defects acting as centers of 

nonradiative recombination are removed by etching. These defects may be extended 

(cracks, dislocations) and point (impurities, vacancies, interstitials, complexes). 

4.4.2 The effect of excitation intensity on PL for dry-etched bulk GaN  

         The dependence of PL spectrum on excitation intensity from the quarter which was 

etched to the depth of 700 nm was measured at low temperature and is shown in Fig. 

4.16. In this figure the PL intensity decreases with decreasing excitation intensity and 

both RL and GL bands are observed at different excitation intensities. The RL band 

partially saturates with increasing excitation intensity.  
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Chapter 4 Figures 
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Fig. 4.1: PL spectra from Ga-face (CMP) and N-face (CMP) undoped GaN (sample 

1305-3) at room temperature and P exc = 0.3 W∕cm2 
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Fig. 4.2: PL spectra from Ga-face (CMP) and  N-face (CMP) undoped GaN (sample 

1305-3) at low temperature about 15 K and P exc = 0.3 W∕cm2 
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Fig. 4.3: PL spectra from Ga-face (CMP) undoped GaN (sample 1305-3) at different 

temperatures and Pexc = 0.0017 W∕cm2 
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Fig. 4.4: PL spectra from N-face (CMP) undoped GaN (sample 1305-3) at different 

temperatures and Pexc = 0.0017 W∕cm2 
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Fig. 4.5: PL spectra at different excitation intensities for Ga-face (CMP) undoped GaN 

(sample 1305-3) at T = 15 K.  
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Fig. 4.6: PL spectra from Ga-face (MP) and N-face (CMP) undoped GaN (sample 1412-

4) at temperature T = 15 K and P exc = 0.3 W∕cm2 
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Fig. 4.7: PL spectra from Ga-face (MP) and N-face (CMP) Fe-doped GaN (sample 857-

3) at T = 15 K and, Pexc = 0.3 W∕cm2 
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Fig. 4.8: PL spectra from Ga-face (MP) Fe-doped GaN (sample 857-3) with using 325 

nm filter and without filter at T = 15 K, Pexc = 0.3 W∕cm2 
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Fig, 4.9: Temperature dependence of PL spectrum for Ga-face (MP) Fe-doped GaN 

(sample 857-3) at Pexc = 0.3 W∕cm2 
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Fig. 4.10: PL intensity as a function of inverse temperature for the RL2 and GL2 bands 

from Ga-face (MP) Fe-doped GaN (sample 857-3).  
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Fig. 4.11: PL spectra from Ga-face (CMP) and N-face (MP) Fe-doped GaN (sample 857-

14) at T = 15 K, Pexc = 0.3 W∕cm2 

 

 

 



www.manaraa.com

 

 

43 

104

105

106

1.5 2 2.5 3 3.5

PL
 In

te
ns

ity
 (r

el
. u

ni
ts

)

Photon Energy (eV)

with sapphire window

without sapphire window

 
 

Fig. 4.12: PL spectra from N-face (MP) Fe-doped GaN (sample 857-14) with using 

sapphire window and without the window at T= 15 K, Pexc = 0.3 W/cm2 
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Fig. 4.13: PL spectra from Ga-face (CMP) of Fe-doped GaN (sample 857-14) obtained 

with unfocused HeCd laser. Three scans correspond to the following measurements: 1) 

area with small pits (A) and the background (B); 2) area with one large pit (A) and small 

contribution from the background (B), the beam reduced to the size of 1 mm; 3) area free 

of pits (just the background (B))   at T= 15 K, P exc = 0.3 W/cm2  
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Fig. 4.14: PL spectra taken with a focused HeCd laser from Ga-face (CMP) of Fe-doped 

GaN (sample 857-14) at temperature of about 15 K and at Pexc = 0.56 W/cm2 
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Fig. 4.15: PL spectra from different areas of the Ga-face (MP) undoped GaN (sample 

1412-4) etched by RIE to different depths. T= 15 K, Pexc = 0.3W/cm2 
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Fig. 4.16: PL spectra (divided on excitation intensity) at different excitation intensities 

from RIE-etched (700 nm) Ga-face (MP) undoped GaN (sample 1412-4) at T= 15 K. 
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Chapter 5: Summary  

         Different types of bulk GaN samples (undoped and Fe-doped) grown by HVPE 

technique at Kyma Technologies have been studied with photoluminescence (PL). 

Measurements have been performed from surfaces treated with chemical-mechanical 

polish (CMP) and mechanical polish (MP). In general, we observed that for all the 

samples, the PL intensity from the CMP-treated surfaces is much higher than that from 

the MP-treated surfaces due to some defects formed during the process of MP polish. 

          We observed for undoped high-quality GaN that PL from CMP-treated Ga face is 

stronger than that from the CMP-treated N face. Further, we observed that the CMP 

surface of undoped bulk GaN has higher PL intensity than that from CMP surface of Fe-

doped samples. PL from the CMP surfaces of undoped bulk GaN samples contains a 

broad RL band and a broad GL band which are associated with unknown defects. 

However, PL from the CMP surfaces of Fe-doped GaN samples contained the blue (BL) 

band. Pits from CMP-surface of Fe-doped sample produced bright yellow (YL) band, and 

the background of this sample produced only the BL band. We assume that the 

background is insulting and the pits are n-type which is conductive. 

          However, MP surfaces for both undoped and Fe-doped bulk GaN samples have 

very low PL intensities and they all contain relatively narrow red (RL2) and green (GL2) 

bands which are related to unknown defects but were described in literature. After the 

MP-treated surface of undoped sample was etched with RIE method, the PL intensity 

increased by a factor of 1000 due to removal of nonradiative defects from the surface by 
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etching. We observed that as the depth of etching increases from 50 nm to 700 nm, the 

PL intensity gradually increases.   
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